Title: | Nonlinear Growth Models |
---|---|
Description: | A compilation of nonlinear growth models. |
Authors: | Daniel Rodriguez |
Maintainer: | Daniel Rodriguez <[email protected]> |
License: | GPL-3 |
Version: | 1.2.0 |
Built: | 2025-02-12 04:10:34 UTC |
Source: | https://github.com/drodriguezperez/growthmodels |
A compilation of nonlinear growth models.
Package: | growthmodels |
Version: | 1.2.0 |
License: | GPL-3 |
Daniel Rodriguez [email protected]
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.
http://en.wikipedia.org/wiki/Generalised_logistic_function
Computes the Blumberg growth model and its inverse
blumberg(t, alpha, w0, m, t0 = 0) blumberg.inverse(x, alpha, w0, m, t0 = 0)
blumberg(t, alpha, w0, m, t0 = 0) blumberg.inverse(x, alpha, w0, m, t0 = 0)
t |
time |
alpha |
upper asymptote |
w0 |
a reference value at t = t0 |
m |
slope of growth |
t0 |
time shift (default 0) |
x |
size |
Daniel Rodriguez
A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
growth <- blumberg(0:10, 10, 2, 0.5) # Calculate inverse function time <- blumberg.inverse(growth, 12, 2, 0.5)
growth <- blumberg(0:10, 10, 2, 0.5) # Calculate inverse function time <- blumberg.inverse(growth, 12, 2, 0.5)
Computes the Brody growth model and its inverse
brody(t, alpha, w0, k) brody.inverse(x, alpha, w0, k)
brody(t, alpha, w0, k) brody.inverse(x, alpha, w0, k)
t |
time |
alpha |
upper asymptote |
w0 |
the value at t = 0 |
k |
growth rate |
x |
size |
Daniel Rodriguez
M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
growth <- brody(0:10, 10, 5, 0.3) # Calculate inverse function time <- brody.inverse(growth, 10, 5, 0.3)
growth <- brody(0:10, 10, 5, 0.3) # Calculate inverse function time <- brody.inverse(growth, 10, 5, 0.3)
Computes the Chapman-Richards growth model and its inverse
chapmanRichards(t, alpha, beta, k, m) chapmanRichards.inverse(x, alpha, beta, k, m)
chapmanRichards(t, alpha, beta, k, m) chapmanRichards.inverse(x, alpha, beta, k, m)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- chapmanRichards.inverse(growth, 10, 0.5, 0.3, 0.5)
growth <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- chapmanRichards.inverse(growth, 10, 0.5, 0.3, 0.5)
Computes the Generalised Logistic growth model
generalisedLogistic(t, A, U, k, beta, t0) generalisedLogistic.inverse(x, A, U, k, beta, t0 = 0)
generalisedLogistic(t, A, U, k, beta, t0) generalisedLogistic.inverse(x, A, U, k, beta, t0 = 0)
t |
time |
A |
the lower asymptote |
U |
the upper asymptote |
k |
growth range |
beta |
growth range |
t0 |
time shift (default 0) |
x |
size |
Daniel Rodriguez
http://en.wikipedia.org/wiki/Generalised_logistic_function
growth <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3) # Calculate inverse function time <- generalisedLogistic.inverse(growth, 5, 10, 0.3, 0.5, 3)
growth <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3) # Calculate inverse function time <- generalisedLogistic.inverse(growth, 5, 10, 0.3, 0.5, 3)
Computes the Generalised Richard growth model and its inverse
generalisedRichard(t, A, U, k, m, beta, t0) generalisedRichard.inverse(x, A, U, k, m, beta, t0 = 0)
generalisedRichard(t, A, U, k, m, beta, t0) generalisedRichard.inverse(x, A, U, k, m, beta, t0 = 0)
t |
time |
A |
the lower asymptote |
U |
the upper asymptote |
k |
growth range |
m |
slope of growth |
beta |
growth range |
t0 |
time shift (default 0) |
x |
size |
Daniel Rodriguez
http://en.wikipedia.org/wiki/Generalised_logistic_function
growth <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3) time <- generalisedRichard.inverse(growth, 5, 10, 0.3, 0.5, 1, 3)
growth <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3) time <- generalisedRichard.inverse(growth, 5, 10, 0.3, 0.5, 1, 3)
Computes the Gompertz growth model and its inverse
gompertz(t, alpha, beta, k) gompertz.inverse(x, alpha, beta, k)
gompertz(t, alpha, beta, k) gompertz.inverse(x, alpha, beta, k)
t |
time |
alpha |
upper asymptote |
beta |
growth displacement |
k |
growth rate |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- gompertz(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- gompertz.inverse(growth, 10, 0.5, 0.3)
growth <- gompertz(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- gompertz.inverse(growth, 10, 0.5, 0.3)
Computes the Janoschek growth model and its inverse
janoschek(t, alpha, beta, b, c) janoschek.inverse(x, alpha, beta, b, c)
janoschek(t, alpha, beta, b, c) janoschek.inverse(x, alpha, beta, b, c)
t |
time |
alpha |
upper asymptote |
beta |
lower asymptote |
b |
growth parameter |
c |
shape parameter |
x |
size |
Daniel Rodriguez
Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.
growth <- janoschek(0:10, 10, 2, 0.5, 2) # Calculate inverse function time <- janoschek.inverse(growth, 12, 2, 0.5, 2)
growth <- janoschek(0:10, 10, 2, 0.5, 2) # Calculate inverse function time <- janoschek.inverse(growth, 12, 2, 0.5, 2)
Computes the Logistic growth model
logistic(t, alpha, beta, k) logistic.inverse(x, alpha, beta, k)
logistic(t, alpha, beta, k) logistic.inverse(x, alpha, beta, k)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- logistic(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- logistic.inverse(growth, 10, 0.5, 0.3)
growth <- logistic(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- logistic.inverse(growth, 10, 0.5, 0.3)
Computes the Log-logistic growth model
loglogistic(t, alpha, beta, k) loglogistic.inverse(x, alpha, beta, k)
loglogistic(t, alpha, beta, k) loglogistic.inverse(x, alpha, beta, k)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Daniel Rodriguez
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
growth <- loglogistic(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- loglogistic.inverse(growth, 10, 0.5, 0.3)
growth <- loglogistic(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- loglogistic.inverse(growth, 10, 0.5, 0.3)
Computes the Mitcherlich growth model
mitcherlich(t, alpha, beta, k) mitcherlich.inverse(x, alpha, beta, k)
mitcherlich(t, alpha, beta, k) mitcherlich.inverse(x, alpha, beta, k)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- mitcherlich(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- mitcherlich.inverse(growth, 10, 0.5, 0.3)
growth <- mitcherlich(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- mitcherlich.inverse(growth, 10, 0.5, 0.3)
Computes the Morgan-Mercer-Flodin growth model
mmf(t, alpha, w0, gamma, m) mmf.inverse(x, alpha, w0, gamma, m)
mmf(t, alpha, w0, gamma, m) mmf.inverse(x, alpha, w0, gamma, m)
t |
time |
alpha |
upper asymptote |
w0 |
the value at t = 0 |
gamma |
parameter that controls the point of inflection |
m |
growth rate |
x |
size |
Daniel Rodriguez
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
growth <- mmf(0:10, 10, 0.5, 4, 1) # Calculate inverse function time <- mmf.inverse(growth, 10, 0.5, 4, 1)
growth <- mmf(0:10, 10, 0.5, 4, 1) # Calculate inverse function time <- mmf.inverse(growth, 10, 0.5, 4, 1)
Computes the monomolecular growth model
monomolecular(t, alpha, beta, k) monomolecular.inverse(x, alpha, beta, k)
monomolecular(t, alpha, beta, k) monomolecular.inverse(x, alpha, beta, k)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- monomolecular(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- monomolecular.inverse(growth, 10, 0.5, 0.3)
growth <- monomolecular(0:10, 10, 0.5, 0.3) # Calculate inverse function time <- monomolecular.inverse(growth, 10, 0.5, 0.3)
Computes the negative exponential growth model
negativeExponential(t, alpha, k) negativeExponential.inverse(x, alpha, k)
negativeExponential(t, alpha, k) negativeExponential.inverse(x, alpha, k)
t |
time |
alpha |
upper asymptote |
k |
growth rate |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- negativeExponential(0:10, 1, 0.3) # Calculate inverse function time <- negativeExponential.inverse(growth, 10, 0.3)
growth <- negativeExponential(0:10, 1, 0.3) # Calculate inverse function time <- negativeExponential.inverse(growth, 10, 0.3)
Computes the Richard growth model and its inverse
richard(t, alpha, beta, k, m) richard.inverse(x, alpha, beta, k, m)
richard(t, alpha, beta, k, m) richard.inverse(x, alpha, beta, k, m)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- richard(0:10, 10, 0.5, 0.3, 0.5) time <- richard.inverse(growth, 10, 0.5, 0.3, 0.5)
growth <- richard(0:10, 10, 0.5, 0.3, 0.5) time <- richard.inverse(growth, 10, 0.5, 0.3, 0.5)
Computes the Schnute growth model
schnute(t, r0, beta, k, m) schnute.inverse(x, r0, beta, k, m)
schnute(t, r0, beta, k, m) schnute.inverse(x, r0, beta, k, m)
t |
time |
r0 |
reference value |
beta |
growth displacement |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
growth <- schnute(0:10, 10, 5, .5, .5) # Calculate inverse function time <- schnute.inverse(growth, 10, 5, .5, .5)
growth <- schnute(0:10, 10, 5, .5, .5) # Calculate inverse function time <- schnute.inverse(growth, 10, 5, .5, .5)
Computes the Stannard growth model
stannard(t, alpha, beta, k, m) stannard.inverse(x, alpha, beta, k, m)
stannard(t, alpha, beta, k, m) stannard.inverse(x, alpha, beta, k, m)
t |
time |
alpha |
upper asymptote |
beta |
growth displacement |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
growth <- stannard(0:10, 1, .2, .1, .5) # Calculate inverse function time <- stannard.inverse(growth, 1, .2, .1, .5)
growth <- stannard(0:10, 1, .2, .1, .5) # Calculate inverse function time <- stannard.inverse(growth, 1, .2, .1, .5)
Computes the von Bertalanffy growth model
vonBertalanffy(t, alpha, beta, k, m) vonBertalanffy.inverse(x, alpha, beta, k, m)
vonBertalanffy(t, alpha, beta, k, m) vonBertalanffy.inverse(x, alpha, beta, k, m)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- vonBertalanffy.inverse(growth, 10, 0.5, 0.3, 0.5)
growth <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- vonBertalanffy.inverse(growth, 10, 0.5, 0.3, 0.5)
Computes the Weibull growth model
weibull(t, alpha, beta, k, m) weibull.inverse(x, alpha, beta, k, m)
weibull(t, alpha, beta, k, m) weibull.inverse(x, alpha, beta, k, m)
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Daniel Rodriguez
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
growth <- weibull(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- weibull.inverse(growth, 10, 0.5, 0.3, 0.5)
growth <- weibull(0:10, 10, 0.5, 0.3, 0.5) # Calculate inverse function time <- weibull.inverse(growth, 10, 0.5, 0.3, 0.5)